
A New Approach to Optimized Negative Selection

Brian Schmidt
Computer Science Department

College of Engineering and Applied Sciences

Western Michigan University

Kalamazoo, Michigan, USA

brian.h.schmidt@wmich.edu

Ala Al-Fuqaha
Computer Science Department

College of Engineering and Applied Sciences

Western Michigan University

Kalamazoo, Michigan, USA

ala.al-fuqaha@wmich.edu

Abstract-- The Negative Selection (NS) algorithm is the first

algorithm to come from the study of natural immune systems,

and is the most widely known and applied algorithm in the

field. It has been used to build intrusion detection systems

along with many other security-related tasks. However, it has

not been possible to use the Negative Selection algorithm on

many real-world scenarios. The present research shows an

optimization of the negative selection algorithm to make its

execution faster. The optimized algorithm remains

functionally the same, providing the same results as the

unoptimized algorithm. Details are given about the

optimization scheme used and the optimized negative

selection algorithm is tested on the UCI Breast Cancer data

set. The performance of the unoptimized negative selection

algorithm is compared to the performance of the algorithm

with the proposed optimization. Three claims about the

function of the optimized negative selection algorithm are

made and tested with four experiments. The results of the

experiments are used to demonstrate that the algorithm is

faster and does not change the negative selection algorithm or

lower its accuracy. Although there has been research into the

optimization of the Negative Selection algorithm, this work

will only apply to hyper-sphere detectors, which has not been

done before.

Keywords— artificial immune system; negative selection;

optimization; optimized negative selection

I. INTRODUCTION

The negative selection algorithm has been around for more than
two decades. In this time, it has been adapted to many problem
domains, and has found some success. Its ability to model a binary
decision boundary using only samples from one class is especially
useful in some circumstances. Since its inspiration is the immune
system of mammals it has been widely used in anomaly detection
systems and network security systems.

However, its performance has been very slow in most real-world
problems. For example, in [1], Kim and Bentley explore the use
of negative selection and clonal selection in an Artificial Immune
System classifier, using both network data and several data sets
from the UCI repository. When used with network data, their
algorithm proved to be infeasible, taking too long to train. It was
estimated that for an 80% detection rate it would take 1,429 years
to generate the 6×108 detectors needed (Kim and Bentley, 1999).
This research is used as an example of the challenges faced by the
NS algorithm, however, there are several optimizations that have
been developed since this publication that could be applied to it.

The focus of this paper will be to optimize both the training and
classification portions of the negative selection algorithm, to
make the algorithm practical in real-world problems.

The rest of the paper is organized in this manner: in Section 2
natural immune systems and Artificial Immune System classifiers
are presented along with a literature review of all previous work
in this area of research. Section 3 presents the optimizations
proposed in this research, along with pseudo code to illustrate

them. Sections 4 describes the data set and code used to test the
optimization along with details of the experiments performed.
Section 5 gives the graphs with the results of the experiments.
Lastly, in Section 6 we draw conclusions and show a few ways in
which the research could be continued.

II. ARTIFICIAL IMMUNE SYSTEMS

A. Natural Immune Systems

Since this work deals with an Artificial Immune System (AIS)
algorithm, this section will provide a short introduction to the
original inspiration for these algorithms.

Natural immune systems are an important part of vertebrate
organisms and are in charge of protecting living beings from
outside dangers. The immune systems perform two essential
exercises activities: recognition of pathogens and the removal of
pathogens, which is anything that can be a threat to the host
organism. Natural immune systems perform these tasks through
two subsystems: the innate immune system and the acquired
immune system. The innate immune system is static and does not
adapt to the conditions of the environment, and the acquired
immune system is able to learn to recognize new pathogens. The
acquired immune system is of interest to computer scientists
because of its adaptability and flexibility.

The process of negative selection is accomplished through the
random generation of detectors known as “antibodies”. Each
antibody is a simple molecule that is able to attach itself to one
particular protein, recognizing it. The proteins recognized are on
the surface of the organism’s own cells and the surfaces of
pathogen cells. The challenge is to generate antibodies that will
only attach themselves to pathogens, while ignoring the
organism’s own cells.

The negative selection process proceeds through the creation of
cells that generate antibodies randomly. However, before the cells
are fully mature, they are verified in the thymus, an organ located
behind the sternum in humans. The thymus tests each immature
antibody-generating cell against the body’s own cells, removing
all cells that generate antibodies that recognize the body’s own
cells as pathogens.

Once an antibody attaches itself to a pathogen, it is marked for
destruction and disposal. The classification rule is simply this: if
one or more antibodies recognizes a tissue, then it is non-self and
dangerous; if no antibody recognizes a tissue, then it is self and
safe. A special attribute of the negative selection algorithm is that
it only requires samples of the self tissue to perform classification.

B. The Negative Selection Algorithm

From the natural process known as negative selection, an
algorithm has been developed that is able to perform binary
classification. The Negative Selection algorithm is described in
this section. The Negative Selection algorithm was first presented
by Forrest, et al. in [2].

The training algorithm derived from the actions of the thymus is
very simple. The strategy is directly applicable to data that is
separated into two classes only, in the same way that the immune

system recognizes self and non-self. This means that one class is
chosen to be self and the other class becomes non-self. An
antibody is implemented in a computer as a simple classifier
called a “detector”, which takes a sample from the data set and
returns true or false, signaling whether or not it has recognized the
sample. It is not necessary for a detector to be of any type or
structure, as long as it is able to classify a sample. Another
component of the algorithm is mechanism for detectors to be
randomly generated.

The negative selection takes a parameter that determines the
desired size of the set of detectors. Larger sets are not necessarily
better, since they take more time to create and to classify samples.
The algorithm proceeds iteratively, generating a random detector
and testing it against the set of samples in the data set that are in
the class that has been decided to be the “self” class. If the new
random detector does not match any samples in the self class, then
is added to the set; if it does match a sample, then it is discarded.
A pseudo code listing of the negative selection training algorithm
is found in Figure 1.

As can be seen in the pseudo code listing, the portion of code that
is executed most often in the algorithm is the match() function,
which compares one detector against one sample from the data
set. This function is used many times during the execution of the
algorithm. This is a good place to start when looking for ways to
optimize the algorithm.

Like the classification performed by the natural immune system,
the Negative Selection algorithm classification step is very
simple. The classification step uses the set of detectors created by
the training step. Classification is performed using the whole set
of detectors, by comparing each detector to the sample to be
classified. If one detector matches the sample, then it is classified
as “non-self”; if no detectors match the sample, then it is classified
as “self”. As explained above, the choice of self and non-self
classes is taken during the training step of the algorithm. Pseudo
code for the classification portion of the Negative Selection
Algorithm can be seen in Figure 2.

C. Affinity Measures

The “affinity” of a detector is defined in relation to a data sample,
in the same way as in the natural immune system. The affinity of
a detector-sample pair is a measurement of how well the detector
matches the sample. There is no universal way to define affinity,
the affinity measure is defined according to the type of data that
the Negative Selection algorithm is dealing with.

Figure 1. Pseudo Code for the Negative Selection Training Algorithm

For real-valued data, distance metrics are a popular way to define
affinity. For example: Euclidian distance, Manhattan distance,
Cosine distance, and Chebyshev distance. For string data, other
distance metrics are available that can be used as an affinity
measure. For example, Hamming distance, binary distance, edit
distance, and value difference metrics. A good overview of these
and other ways to calculate affinity was done by Dasgupta and
Nino and can be found in [3].

D. Detector Types

As previously stated, there are many ways to implement detectors.

However, all of the detector implementations have one thing in

common: they are all simple classifiers that return a binary value.

This section discusses some common implementations of

detectors.

R-chunk and r-contiguous detectors work with string data. Each

string is made up of a defined set of symbols. The detectors

themselves are strings made of the same symbols. The r-

contiguous matching rule matches a detector and a string of the

same length if r contiguous symbols in both strings are identical,

where r is an integer. R-chunk matching is similar to r-contiguous

matching, but the detector and data are not necessarily of the same

length. In [4], Dasgupta, and Majumdar use r-contiguous bit

detectors for anomaly detection and classification with personnel

data. In [5], Balthrop et al. use r-contiguous bit detectors for

network intrusion detection. Lastly, in [6], Ayara et al. use r-

contiguous bit detectors for error detection and classification in

ATM machines. R-contiguous detectors are first mentioned

Percus et al. in [7], and r-chunk detectors are first mentioned by

in Balthrop et al. in [5].

Using the notion of affinity and distance functions mentioned in

a previous section, it is possible to define hyper-sphere detectors.

A hyper-sphere is defined by a center point and a radius. The

detector then “matches” a point within the feature space if it falls

within its hyper-sphere. This type of detector only works in

feature spaces that only contain continuous (real-valued) features.

The most common distance measure used is Euclidian distance.

In [8], Cserey et al. use hyper-sphere detectors for image

recognition, while in [9], Şahan et al. uses hyper-sphere detectors

for medical diagnosis.

E. Previous Work in Optimized AIS Negative Selection

Algorithms

The idea of creating a more efficient Negative Selection algorithm

is first presented by Elberfeld and Textor in [10], in which they

show how r-contiguous and r-chunk based set of detectors could

be trained and used in recognition in a more efficient manner.

Through the use of a specialized technique, the authors are able to

compress the set of detectors.

The compression scheme used is simply using a single pattern to

describe a set of several detectors. By using the patterns instead

Figure 2. Pseudo Code for the Negative Selection Classification

Algorithm

detectors: set of detectors created by training algorithm

sample: sample to be classified

matches(): a function that returns true if an antibody

recognizes a sample

FOREACH { a | a ∈ detectors }

 IF matches(a, sample}

 return “non-self”

 ENDIF

ENFOREACH

return “self”

self: set of seen self samples

detectors: the set of detectors

matches(): a function that returns true if an antibody

recognizes an element

generate_random_antibody(): a function to generate a

random antibody

detectors = {}

WHILE !stopping_criteria

 new_antibody = generate_random_antibody()

 match = FALSE

 FOREACH { s | s ∈ self }

 IF matches(s, new_antibody)

 match = TRUE

 ENDIF

 END FOREACH

 IF !match

 detectors = detectors ∪ new_antibody

 ENDIF

ENDWHLE

of the detectors themselves in the matching steps of the training

and classification algorithms, the time complexity is lowered. The

worst case time complexity of the original algorithm is

exponential, but it becomes polynomial with the new technique.

The results of this paper show that storing all of the detectors is

unnecessary, and by compressing the set a substantial speedup is

achieved.

In a similar publication [11] Liśkiewicz and Textor, also deal with

the optimization of the Negative Selection algorithm. However,

the technique is very different and does not use compression of

the detector set at all. The authors show that it is possible to

implement the Negative Selection algorithm without creating a

detector set at all, depending on the type of detectors used. The

paper is very thorough and provides proofs for all claims, but does

not implement and test the proposed technique. The results are

similar to [10], with the time complexity of the Negative Selection

algorithm being reduced from exponential to polynomial. This

research is, like other research by the same authors, only

applicable to detectors that work with strings, like r-chunk and r-

contiguous detectors.

Following [10] and [11], the ideas in these papers were combined

in [12] by Elberfeld and Textor which sought to settle the question

of whether the Negative Selection algorithm could be used in real-

life problems. This paper presents two algorithms, both used for

training an automaton, which is then used for classification. The

training algorithms can be executed in polynomial time, and the

automaton used for classification works in linear time. The

algorithms work by simulating the Negative Selection algorithm,

with the same behavior being exactly replicated by the more

efficient algorithms. The algorithms use prefix trees to speed up

the work, instead of the patterns used in [10].

The latest work by Textor on the subject of optimizing the

execution of Negative Selection algorithms is [13]. One further

variation from the previous approaches is explored in this

publication, in which detectors are generated by sampling from

the set of S-consistent detectors. S-consistent detectors are

defined to be the set of detectors that do not match any element in

the S set, which is the set of self samples. Whereas the Negative

Selection Algorithm (NSA) algorithm normally samples the space

of possible detectors uniformly, the author shows that by doing

this differently, it is possible to speed up the execution of NSAs.

This paper theoretically proves that it possible to speed up the

execution of NSA by using probabilistic sampling techniques

such as Markov Chain Monte Carlo methods.

In [14] and [15], Wang, Yibo, and Dong propose a faster training

and classification methods for Negative Selection algorithms. The

technique they show uses “neighborhoods” in the feature space to

represent both detectors and samples to be classified. They also

introduce a method to improve the matching operation between

detectors and samples that improves the performance, especially

in high dimensions.

In [16] Yang et al. the authors show a similar approach to the one

used in [14] and [15]. The algorithm is called GF-RNSA, a

Negative Selection algorithm which uses the concept of grid cells

to speed up execution. The feature space is separated into grid

cells, and detectors are generated separately for each cell, only

comparing the candidate detectors with the self samples that are

in the same grid cell, instead of the whole set. This approach also

manages to eliminate the exponential time complexity of the

NSA. This publication also showed experimental results. In [17]

Wen et.al. apply a very similar technique as [16].

Lastly, a novel detector generation method is proposed in [18].

The method was developed by Ji and Dasgupta and is called V-

detector. The strategy involves the statistical analysis of the data

in order to improve the amount of non-self space that is covered

while also minimizing the number of detectors needed to do so.

The detector generation process also takes into account the

boundary of the classes in the data set to improve the quality of

the set of detectors. The detectors are allowed to be of variable

size, as well. These techniques allow the algorithm to be very

efficient. The scheme is also applicable across many different

detector types.

III. OPTIMIZING THE NEGATIVE SELECTION

ALGORITHM

This section gives a general description of the optimization

scheme along with implementation details.

A. Optimizing the Training Algorithm

In the pseudo code found in Figure 1, the function matches() is

used to compare a new detector with every sample in the data set.

This function is used heavily to find detectors that do not match

any samples in the subset of samples in a data set not in the “self”

class. This is because the detector is applied one-by-one to each

sample in the training set.

Instead of comparing a new detector with the set of self samples

individually, in the optimized training algorithm the comparison

proceeds feature-by-feature. This process is best explained as a

“filtering” process that is applied on each feature in the data set

individually. The filtering process discards the self samples that

do not match the new detector in the current feature being

processed. The set of self samples becomes smaller and smaller

as the filtering proceeds, speeding up the comparison as the

features are processed. If there are any self samples remaining in

the set after all of the features are processed, we know that the

proposed detector matches one or more self samples, and is

therefore discarded (as with normal Negative Selection). If there

are no self samples left in the set at any point in the processing,

we know that the proposed detector does not match any self

samples, and can therefore be added to the set of detectors.

B. Optimizing the Classification Algorithm

As in Figure 1, in the pseudo code found in Figure 2 the function

matches() is used to compare the set of detectors with the sample

to be classified. This function is used to find detectors that match

the sample to be classified. It works by comparing each detector

in the set of detectors to the sample to be classified individually.

In the same way as the training algorithm, when classifying a

sample into self or non-self, the comparison between the sample

and the set of detectors proceeds feature-by-feature. The set of

detectors that could match the self-sample becomes smaller and

smaller as more and more detectors are “filtered” from the set. If

the set of detectors is emptied during this filtering process, then

the sample does not belong to the self class. If there are detectors

remaining in the set after all of the features are processed, then we

know that the sample belongs to the non-self class.

Figure 3 shows primary filtering happening in two dimensions

with two hyper-sphere detectors. It can be seen that the point to

be classified falls within the radius of hyper-sphere B. Filtering

based on the feature X, both hyper-spheres would be kept in the

set, since the example falls within both in that dimension.

Filtering based on the Y dimension would filter out the A detector,

since the example does not fall within the radius of the A detector

in that dimension.

C. Implementing the Algorithm

The Negative Selection algorithm implemented to test the

optimization proposed in this research is implemented using

hyper-sphere detectors. The detector radius is defined using

Euclidian distance. Each detector contains a center point, defined

as a set of coordinates in Euclidian space, as well as a radius. A

detector matches a sample only if the sample falls within the

Figure 3. Primary Filtering

radius of the detector. Each detector has a fixed radius, given to

the training algorithm as a parameter. The only other parameter

needed by the training algorithm is the size of the detector set to

be generated. The range of the values in each feature of the data

set was normalized to the range [0,1]. This is done to simplify the

code, but is not necessary and the optimization can be

implemented without this step.

The training algorithm uses a two-stage filtering process to speed

up the comparison between the new detector and the set of

samples containing the self class. The first stage compares each

feature of the sample to the allowed range of the detector in that

feature. The allowed range is calculated by adding and subtracting

the radius from the coordinate of the center point in that

dimension. If the sample does not fall within the range calculated,

it is removed from the set. In this manner, the set of samples that

could be contained by a detector is iteratively reduced in size.

The secondary filtering step is necessary in this case because of

the “roundness” of the hyper-sphere detectors. The primary

filtering process could leave some samples in the set if they fall

within the hyper-cube that contains the hyper-sphere that is the

detector. Secondary filtering then proceeds as normally done by

the Negative Selection algorithm, by iteratively comparing the

remaining sample set with the detector. After primary and

secondary filtering are completed, the samples remaining in the

set are the ones that fall within the detector radius. If the set is

empty, then the detector can be added to the set of detectors, since

it does not match any samples in the self set. If at any point in the

primary filtering process the set of samples becomes empty, then

the algorithm is able to add the detector immediately, since it is

known that the detector does not match any sample in the self set

without having to perform secondary filtering. The pseudo code

for the optimized Negative Selection training algorithm can be

found in Figure 4. In this pseudo code listing the primary filter

section contains while loop that is filtering out all detectors that

do not meet the criteria. This filter applies the logic described in

the previous sections.

In the pseudo code, p[“center”] defines the center point,

p[“radius”] defines the radius, and p[“class”] defines the class that

the hypersphere belongs to, all attributes of hypersphere p. In the

same way, i[“data”] defines the center point, and i[“class”]

defines the class that the point belongs to, all attributes of point i.

Figure 4. Pseudo Code for the Optimized Negative Selection Training

Algorithm

When using a detector in the pseudo code, d[“center”] references

the vector that contains the center point of the detector d, and

d[“center”][0] references the first dimension of that vector.

Similarly, d[“radius”] references the scalar value that defines the

radius of the detector. When using a data point in the training set

in the pseudo code, s[“class”] references the category that the

sample s belongs to. Also, the vector that defines the sample s is

stored in s[“data”], with s[“data”][0] referencing the first

dimension of the data vector of s.

The filtering process is very similar in the classification algorithm

as it is in the training algorithm, only it is done in reverse. Instead

of comparing the set of self samples with one detector, the

filtering process compares a set of detectors with one sample. The

set of detectors is iteratively reduced, and the remaining detectors

are subjected to secondary filtering. If a detector remains in the

set after both primary and secondary filtering are complete, then

the sample is classified as non-self, since it is “matched” by one

or more detectors, otherwise it is classified as self. The pseudo

code for the optimized Negative Selection classification

algorithm can be found in Figure 5. In this pseudo code listing the

primary filter section contains while loop that is filtering out all

Definitions:

training_set: a list of the training data points, each with an attached
class label

detectors: the set of detectors to be created

population_size: the size of the desired population of detectors
self_class_label: the label of the class designated as “self”

normalize(): a function to normalize the data set

generate_random_antibody(): a function to generate a random
antibody

distance(): a function for calculating the Euclidian distance

between points
nd: total number of dimensions in the data set

Initialization:

training set = normalize(training_set)

detectors = {}

Training Algorithm:

WHILE | detectors | < population_size:

self_class = { s | s ∈ training_set AND s[“class”] =
self_class_label }

 na = generate_random_antibody()

 #primary filtering

 d = 0
 WHILE d < nd

 self_class = { s | s ∈ self_class
 AND na[“center”][d] > (s[“data”][d] - na[“radius”])

 AND s[“data”][d] < (na[“center”][d] + na[“radius”])}
 d = d + 1

 ENDWHILE

 #early decision

 IF | self_class | = 0

 detectors = detectors ∪ na
 #secondary filtering

 ELSE
 flagged = FALSE

 FOREACH { s | s ∈ self_class }
 IF distance(na[“center”], s[“data”]) < na[“radius”]

 flagged = TRUE

 ENDIF

 ENDFOREACH

 IF flagged = FALSE:

 detectors = detectors ∪ na
 ENDIF

 ENDIF

ENDWHILE

detectors that do not meet the criteria. This filter applies the logic

described in the previous sections.

In both of the optimized training and classification algorithms an

“early decision” can be made. This happens when the set of self

samples is emptied, in the training algorithm, or when the set of

detectors is emptied, in the classification algorithm.

IV. TESTING THE OPTIMIZED ALGORITHM

This section contains details about the way in which the

optimization was implemented, along with the data set used and

the claims being tested.

To test the optimization, the Breast Cancer Wisconsin

(Diagnostic) Dataset was chosen from the UCI repository [19].

This data set was chosen because it is limited to two classes,

which fits with the AIS paradigm. To test the algorithm, some

preprocessing was done to the data set. The class label of each

sample was placed in the first column of the data set. All samples

with missing values were removed from the data set, making the

data set smaller but simplifying the algorithm. All duplicate rows

were removed from the data set as well. After this was done, the

data set contained 683 labeled samples, each with 9 real-valued

features. The class labels found in this data set are “malignant”

with 239 samples found in the data set, and “benign” with 444

samples found in the data set.

The model was validated using 10-fold cross validation. To do

this, the dataset used was split evenly into 10 subsets. From these

10 subsets, training, validation, and testing sets are created. The

training set created used 80% of the samples, the validation 10%,

and the testing set 10% of the data. Stratification was also used,

which is a technique used to make sure that each of the 10 subsets

is created so that it contains the same proportion of each class in

the data set. Through this process, we are able to create 10 unique

testing sets, 10 unique validation sets, and 10 unique training sets.

By cycling through these, the experiments are performed 10 times

and the results are averaged.

Figure 5. Pseudo Code for the Optimized Negative Selection
Classification Algorithm

Since the algorithm requires one parameter, we set aside one

subset in every test run to determine the best values for these

parameters. To accomplish this, a grid search is performed on the

validation set, with the objective of finding the value for the

parameter which maximizes the accuracy of the algorithm. The

parameter is the radius of the hyper-spheres. The radius is varied

from 0.01 to 0.99 in 0.01 increments

The tests were performed on an Intel i5 processor running at 1.80

GHz, with 4 GB of memory. The operating system used was 64-

bit Windows 8.1.

Four experiments were performed with the original Negative

Selection algorithm and the optimized version of the Negative

Selection algorithm. The results of the experiments are detailed in

the next section. The experiments are designed to demonstrate

three claims that are made about the optimized Negative Selection

algorithm. The claims deal with the execution time, classification

time, and classification performance of the algorithm. Our claims

about the algorithm are these:

1. The optimized training algorithm is faster than the

unoptimized training algorithm.

2. The optimized classification algorithm is faster than the

unoptimized classification algorithm.

3. The optimization does not affect the accuracy of the

algorithm, being functionally the same.

To make the comparisons between the optimized and unoptimized

algorithms as unbiased as possible, two methods were used: when

testing the training algorithm, both versions of the algorithm were

given the same parameters and the exact same data set, with the

same set of sub data sets (due to the 10-fold cross validation).

When testing the classification algorithm, the exact same set of

detectors is provided to both versions of the algorithm. This was

done so that we could compare both versions of the algorithm

without worrying about randomness affecting the results.

When comparing the accuracy of the optimized and unoptimized

algorithms, the accuracy is calculated as follows:

 Accuracy = (TP + TN) / (TP + TN + FP + FN)) (1)

were TP is the number of true positive predictions, TN is the

number of true negative predictions, FP is the number of false

positive predictions, and FN is the number of false negative

predictions.

All experiments were performed on an Intel i5-based computer

running at 1.80 GHz. The computer has 4 GB of memory, and the

operating system used is 64-bit Windows 8.1. Both the optimized

and unoptimized algorithms were coded in Python 3.4.

V. EXPERIMENTAL RESULTS

This section shows the results of the experiments and

demonstrates the validity of the claims made in the previous

section. To simplify the tests, the detector radius was set to 0.5 for

the experiments graphed in Figures 6, 7, and 8. This radius was

found using a grid search, which was used to find the detector

radius that maximized the accuracy of the algorithm. The grid

search was performed using the validation set.

The relationship between the training time and the data set size is

shown in Figure 6. The detector set size is held constant at 1000,

and the data set size was increased from 100 to 500. It can be seen

that the optimized training algorithm remains linear on the

number of samples in the data set. The time is measured in

seconds.

A confidence interval was calculated using data from Figure 6 for

the difference in the average time taken to finish by both

detectors: set of the detectors generated by the training algorithm
x: the sample to be classified

self_class_label: label of the class designated as “self”

non_self_class_label: label of the class designated as “non-self”
distance(): a function for calculating the Euclidian distance

between points

nd: total number of dimensions in the data set

Classification Algorithm:

#primary filtering
d = 0

WHILE d < nd

detectors = { a | a ∈ detectors
AND x[“data”] [d] > (a[“point”][d] - a[“radius”])
AND x[“data”] [d] < (a[“point”][d] + a[“radius”]) }

 d = d + 1

ENDWHILE

#secondary filtering

FOREACH {a | a ∈ detectors}
 d = distance(x[“center”], a[“center”])

 IF d <= a[“radius”]
 return non_self_class_label

 ENDIF

ENDFOREACH
return self_class_label

algorithms. To do this, 10 data points were taken from the last test

graphed in the figure. For this test, the detector set size was 1000,

and the data set size was 500. With these values a confidence

interval was calculated at the 95% confidence level. The

difference in the average time taken to complete training was

calculated to be between 1.3 and 1.01 seconds, with the optimized

algorithm being faster. This helps to show that claim 1 is true.

The relationship between the training time and the detector set

size is shown in Figure 7. The data set size is held constant at 500,

and the detector set size was increased from 100 to 1000. The

optimized training algorithm is also linear with the number of

detectors in the set. It is faster than the unoptimized training

algorithm.

A confidence interval was calculated using data from Figure 7 for

the difference in the average time taken to finish by both

algorithms. To do this, 10 data points were taken from the last test

graphed in the figure. For this test, the detector set size was 1000,

and the data set size was 500. With these values a confidence

interval was calculated at the 95% confidence level. The

difference in the average time taken to complete was calculated to

be between 1.07 and 1.04 seconds, with the optimized algorithm

being faster. This also helps to demonstrate the validity of claim

1.

The relationship between the size of the set of detectors and the

classification time is shown in Figure 8. The classification time is

the time taken to classify one sample. The size of the detector set

was increased from 100 to 1000.

The confidence interval was calculated using data from Figure 8

for the difference in the average time taken to finish by both

algorithms. To do this, 10 data points were taken from the last test

graphed in the figure. For this test, the detector set size was 1000.

Figure 6. Data Set Size and Training Time

Figure 7. Training Set Size and Training Time

With these values a confidence interval was calculated at the 95%

confidence level. The difference in the average time taken to complete
was calculated to be between 0.0033 and 0.00033, with the optimized

algorithm being faster. The results of this experiment demonstrate that

claim 2 is valid.

The fourth experiment is done on the training and classification

algorithms in tandem, proving that the combination of the

optimized training and classification algorithms does not

negatively affect the accuracy of the algorithm. Figure 9 shows

the relationship between the data set size and the accuracy

achieved by the algorithm. As mentioned, the optimized and

unoptimized versions of the algorithm use the exact same data set

to create the set of detectors. The size of the set of detectors

generated is held constant at 1000. Although it is not easily seen,

the accuracy achieved by the optimized algorithm does not match

the accuracy of the unoptimized algorithm exactly. This is due to

the fact that the Negative Selection algorithm uses randomness in

the training process.

A t-test was performed to compare average accuracy achieved by

both the optimized and unoptimized algorithms. The samples

were paired according to the data set size used, using the same

data that is graphed in Figure 9. The confidence level used was

95%. The null hypothesis could not be rejected, meaning that the

analysis did not provide evidence against claim 3. Additionally,

the Pearson correlation between the paired accuracies was

calculated to be 0.996, a value that shows that the accuracies of

the unoptimized and optimized versions of the algorithm are very

closely related.

VI. CONCLUSIONS AND FUTURE WORK

The optimized training algorithm is, on average, 6.6 times faster

than the unoptimized training algorithm, when averaging the

results from Figures 7, and 8. The optimized classification

Figure 8. Antibody Set Size and Classification Time

Figure 9. Data Set Size and Accuracy

algorithm is, on average, 11.3 times faster than the unoptimized

classification algorithm, when averaging the results from Figure

9. Furthermore, the experiments performed have shown that the

accuracy of the algorithm does not diminish when the

optimization is applied.

The optimized algorithm, however, has several weaknesses. First,

the complexity of the algorithm remains in the same class,

although the constants are decreased significantly. Second, the

optimization is only applicable to detectors in which each

dimension can be evaluated individually, and which allow the set

of data points or detectors to be filtered. That is, the optimization

works on detectors types that allow a data point or detector to be

taken out of the set if it does not match in one individual

dimension, this is not always possible. Third, the density of the

points in the data set can have a significant effect on the

performance of the optimized training algorithm. If the points are

densely packed, then none of them will be filtered out by the

primary filtering process and the secondary filtering will then

have to perform all of the work. In future research, this

optimization scheme could be applied to other data sets to

highlight the effect that the density of the data set has on the

performance of the optimized algorithm.

All previous research we have found on the optimization of the

Negative Selection algorithm has applied to detectors other than

hyper-spheres. This research has demonstrated a simple way to

optimize the performance of the Negative Selection algorithm

when hyper-spheres are used. A direct comparison between this

optimization scheme and others found in the literature is not

possible.

Although the optimization has been demonstrated experimentally

to not affect the accuracy of the algorithm, this has not been

proven formally. Future research could be completed to provide a

formal proof of the optimized Negative Selection algorithm’s

equivalency with the unoptimized Negative Selection algorithm.

Future work can also be done in the application of the

optimization to more complex data sets and exploring the

performance of the optimized algorithm. Lastly, the optimization

proposed in this publication could be very useful when combined

with negative databases, described in [20] by Esponda et al.

REFERENCES

[1] Kim, J. and Bentley, P. Negative selection and niching by
an artificial immune system for network intrusion detection.
in Proceedings of GECCO’99, (Orlando, Florida, USA,
1999), 149-158.

[2] Forrest, S., Perelson, A. S., Allen, L., and Cherukuri, R..
Self-nonself discrimination in a computer. in Proceedings of
the 1994 IEEE Symposium on Security and Privacy, IEEE
Computer Society, Washington, DC, USA, 202.

[3] Dasgupta, D., & Nino, F. Immunological computation:
theory and applications. CRC Press, 2008

[4] Dasgupta, D., & Majumdar, N. S. Anomaly detection in
multidimensional data using negative selection algorithm. in
Proceedings of the World on Congress on Computational
Intelligence, 2002, 1039-1044.

[5] Balthrop, J., Esponda, F., Forrest, S., and Glickman, M.
Coverage and Generalization in an Artificial Immune
System. in GECCO, (New York, 2002), 3-10.

[6] Ayara, M., Timmis, J., De Lemos, R., and Forrest, S.
Immunising automated teller machines. in Artificial Immune
Systems, Springer Berlin Heidelberg, 2005, 404-417

[7] Percus, J., Percus O., and Perelson A. Predicting the Size of
the T-Cell Receptor and Antibody Combining Region from
Consideration of Efficient Self-Nonself Discrimination. in
Proceedings of National Academy Of Sciences USA, 1993,
1691-1695

[8] Cserey, G., Porod, W., and Roska, T. An artificial immune
system based visual analysis model and its real-time terrain
surveillance application. in Artificial Immune Systems,
Springer Berlin Heidelberg, 2004, 250-262.

[9] Şahan, S., Polat, K., Kodaz, H., and Güneş, S. The medical
applications of attribute weighted artificial immune system
(AWAIS): diagnosis of heart and diabetes diseases. in
Artificial Immune Systems, Springer Berlin Heidelberg,
2005, 456-468.

[10] Elberfeld, M., and Textor, J. Efficient algorithms for string-
based negative selection. in Artificial Immune Systems,
Springer Berlin Heidelberg, 2009, 109-121

[11] Liśkiewicz, M., and Textor, J. Negative selection algorithms
without generating detectors. in Proceedings of the 12th
annual conference on Genetic and evolutionary computation
ACM, (Portland, OR, 2010), 1047-1054.

[12] Elberfeld, M., and Textor, J. Negative selection algorithms
on strings with efficient training and linear-time
classification. Theoretical Computer Science, 412(6), 534-
542.

[13] Textor, J. Efficient negative selection algorithms by
sampling and approximate counting. in Parallel Problem
Solving from Nature-PPSN XII, Springer Berlin Heidelberg,
2012, 32-41.

[14] Wang, D., Xue, Y., and Yingfei, D. Anomaly Detection
Using Neighborhood Negative Selection. Intelligent
Automation & Soft Computing, 17(5), 595-605.

[15] Wang, D., Xue, Y., and Dong, Y. NNS: A Novel
Neighborhood Negative Selection algorithm. in World
Automation Congress (WAC), 2012, IEEE, 2012, 453-457.

[16] Yang, T., Deng, H. L., Chen, W., and Wang, Z. GF-NSA: A
Negative Selection Algorithm Based on Self Grid File.
Applied Mechanics and Materials, 44, 3200-3203.

[17] Wen, C., Xiaoming, D., Tao, L., and Tao, Y. Negative
selection algorithm based on grid file of the feature space.
Knowledge-Based Systems, 56, 26-35.

[18] Ji, Z., and Dasgupta, D. V-detector: An efficient negative selection
algorithm with “probably adequate” detector coverage. Information
sciences, vol. 179, no. 10, 2009, 1390-1406.

[19] Bache, K. and Lichman M. UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml], Irvine, CA:
University of California, School of Information and
Computer Science. Accessed December 3, 2014.

[20] Esponda, F., Ackley E., Forrest S., and Helman P. Online
negative databases. in Artificial Immune Systems, Springer
Berlin Heidelberg, 2004, 175-188.

