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Abstract-- The Negative Selection (NS) algorithm is the first 

algorithm to come from the study of natural immune systems, 

and is the most widely known and applied algorithm in the 

field. It has been used to build intrusion detection systems 

along with many other security-related tasks. However, it has 

not been possible to use the Negative Selection algorithm on 

many real-world scenarios. The present research shows an 

optimization of the negative selection algorithm to make its 

execution faster. The optimized algorithm remains 

functionally the same, providing the same results as the 

unoptimized algorithm. Details are given about the 

optimization scheme used and the optimized negative 

selection algorithm is tested on the UCI Breast Cancer data 

set. The performance of the unoptimized negative selection 

algorithm is compared to the performance of the algorithm 

with the proposed optimization.    Three claims about the 

function of the optimized negative selection algorithm are 

made and tested with four experiments. The results of the 

experiments are used to demonstrate that the algorithm is 

faster and does not change the negative selection algorithm or 

lower its accuracy. Although there has been research into the 

optimization of the Negative Selection algorithm, this work 

will only apply to hyper-sphere detectors, which has not been 

done before. 
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I. INTRODUCTION 

The negative selection algorithm has been around for more than 
two decades. In this time, it has been adapted to many problem 
domains, and has found some success. Its ability to model a binary 
decision boundary using only samples from one class is especially 
useful in some circumstances. Since its inspiration is the immune 
system of mammals it has been widely used in anomaly detection 
systems and network security systems.  

However, its performance has been very slow in most real-world 
problems. For example, in [1], Kim and Bentley explore the use 
of negative selection and clonal selection in an Artificial Immune 
System classifier, using both network data and several data sets 
from the UCI repository. When used with network data, their 
algorithm proved to be infeasible, taking too long to train. It was 
estimated that for an 80% detection rate it would take 1,429 years 
to generate the 6×108 detectors needed (Kim and Bentley, 1999). 
This research is used as an example of the challenges faced by the 
NS algorithm, however, there are several optimizations that have 
been developed since this publication that could be applied to it.  

The focus of this paper will be to optimize both the training and 
classification portions of the negative selection algorithm, to 
make the algorithm practical in real-world problems.  

The rest of the paper is organized in this manner: in Section 2 
natural immune systems and Artificial Immune System classifiers 
are presented along with a literature review of all previous work 
in this area of research. Section 3 presents the optimizations 
proposed in this research, along with pseudo code to illustrate 

them. Sections 4 describes the data set and code used to test the 
optimization along with details of the experiments performed. 
Section 5 gives the graphs with the results of the experiments. 
Lastly, in Section 6 we draw conclusions and show a few ways in 
which the research could be continued. 

II. ARTIFICIAL IMMUNE SYSTEMS 

A. Natural Immune Systems 

Since this work deals with an Artificial Immune System (AIS) 
algorithm, this section will provide a short introduction to the 
original inspiration for these algorithms.  

Natural immune systems are an important part of vertebrate 
organisms and are in charge of protecting living beings from 
outside dangers. The immune systems perform two essential 
exercises activities: recognition of pathogens and the removal of 
pathogens, which is anything that can be a threat to the host 
organism. Natural immune systems perform these tasks through 
two subsystems: the innate immune system and the acquired 
immune system. The innate immune system is static and does not 
adapt to the conditions of the environment, and the acquired 
immune system is able to learn to recognize new pathogens. The 
acquired immune system is of interest to computer scientists 
because of its adaptability and flexibility.  

The process of negative selection is accomplished through the 
random generation of detectors known as “antibodies”. Each 
antibody is a simple molecule that is able to attach itself to one 
particular protein, recognizing it. The proteins recognized are on 
the surface of the organism’s own cells and the surfaces of 
pathogen cells. The challenge is to generate antibodies that will 
only attach themselves to pathogens, while ignoring the 
organism’s own cells. 

The negative selection process proceeds through the creation of 
cells that generate antibodies randomly. However, before the cells 
are fully mature, they are verified in the thymus, an organ located 
behind the sternum in humans. The thymus tests each immature 
antibody-generating cell against the body’s own cells, removing 
all cells that generate antibodies that recognize the body’s own 
cells as pathogens.  

Once an antibody attaches itself to a pathogen, it is marked for 
destruction and disposal. The classification rule is simply this: if 
one or more antibodies recognizes a tissue, then it is non-self and 
dangerous; if no antibody recognizes a tissue, then it is self and 
safe. A special attribute of the negative selection algorithm is that 
it only requires samples of the self tissue to perform classification.  

B. The Negative Selection Algorithm 

From the natural process known as negative selection, an 
algorithm has been developed that is able to perform binary 
classification. The Negative Selection algorithm is described in 
this section. The Negative Selection algorithm was first presented 
by Forrest, et al. in [2].  

The training algorithm derived from the actions of the thymus is 
very simple. The strategy is directly applicable to data that is 
separated into two classes only, in the same way that the immune 



system recognizes self and non-self. This means that one class is 
chosen to be self and the other class becomes non-self. An 
antibody is implemented in a computer as a simple classifier 
called a “detector”, which takes a sample from the data set and 
returns true or false, signaling whether or not it has recognized the 
sample. It is not necessary for a detector to be of any type or 
structure, as long as it is able to classify a sample. Another 
component of the algorithm is mechanism for detectors to be 
randomly generated.  

The negative selection takes a parameter that determines the 
desired size of the set of detectors. Larger sets are not necessarily 
better, since they take more time to create and to classify samples. 
The algorithm proceeds iteratively, generating a random detector 
and testing it against the set of samples in the data set that are in 
the class that has been decided to be the “self” class. If the new 
random detector does not match any samples in the self class, then 
is added to the set; if it does match a sample, then it is discarded. 
A pseudo code listing of the negative selection training algorithm 
is found in Figure 1. 

As can be seen in the pseudo code listing, the portion of code that 
is executed most often in the algorithm is the match() function, 
which compares one detector against one sample from the data 
set. This function is used many times during the execution of the 
algorithm. This is a good place to start when looking for ways to 
optimize the algorithm. 

Like the classification performed by the natural immune system, 
the Negative Selection algorithm classification step is very 
simple. The classification step uses the set of detectors created by 
the training step. Classification is performed using the whole set 
of detectors, by comparing each detector to the sample to be 
classified. If one detector matches the sample, then it is classified 
as “non-self”; if no detectors match the sample, then it is classified 
as “self”. As explained above, the choice of self and non-self 
classes is taken during the training step of the algorithm. Pseudo 
code for the classification portion of the Negative Selection 
Algorithm can be seen in Figure 2. 

C. Affinity Measures 

The “affinity” of a detector is defined in relation to a data sample, 
in the same way as in the natural immune system. The affinity of 
a detector-sample pair is a measurement of how well the detector 
matches the sample. There is no universal way to define affinity, 
the affinity measure is defined according to the type of data that 
the Negative Selection algorithm is dealing with. 

 

Figure 1. Pseudo Code for the Negative Selection Training Algorithm 

For real-valued data, distance metrics are a popular way to define 
affinity. For example: Euclidian distance, Manhattan distance, 
Cosine distance, and Chebyshev distance. For string data, other 
distance metrics are available that can be used as an affinity 
measure. For example, Hamming distance, binary distance, edit 
distance, and value difference metrics. A good overview of these 
and other ways to calculate affinity was done by Dasgupta and 
Nino and can be found in [3]. 

D. Detector Types 

As previously stated, there are many ways to implement detectors. 

However, all of the detector implementations have one thing in 

common: they are all simple classifiers that return a binary value. 

This section discusses some common implementations of 

detectors. 

R-chunk and r-contiguous detectors work with string data. Each 

string is made up of a defined set of symbols. The detectors 

themselves are strings made of the same symbols. The r-

contiguous matching rule matches a detector and a string of the 

same length if r contiguous symbols in both strings are identical, 

where r is an integer. R-chunk matching is similar to r-contiguous 

matching, but the detector and data are not necessarily of the same 

length. In [4], Dasgupta, and Majumdar use r-contiguous bit 

detectors for anomaly detection and classification with personnel 

data. In [5], Balthrop et al. use r-contiguous bit detectors for 

network intrusion detection. Lastly, in [6], Ayara et al. use r-

contiguous bit detectors for error detection and classification in 

ATM machines. R-contiguous detectors are first mentioned 

Percus et al. in [7], and r-chunk detectors are first mentioned by 

in Balthrop et al. in [5]. 

Using the notion of affinity and distance functions mentioned in 

a previous section, it is possible to define hyper-sphere detectors. 

A hyper-sphere is defined by a center point and a radius. The 

detector then “matches” a point within the feature space if it falls 

within its hyper-sphere. This type of detector only works in 

feature spaces that only contain continuous (real-valued) features. 

The most common distance measure used is Euclidian distance. 

In [8], Cserey et al. use hyper-sphere detectors for image 

recognition, while in [9], Şahan et al. uses hyper-sphere detectors 

for medical diagnosis. 

E. Previous Work in Optimized AIS Negative Selection 

Algorithms 

The idea of creating a more efficient Negative Selection algorithm 

is first presented by Elberfeld and Textor in [10], in which they 

show how r-contiguous and r-chunk based set of detectors could 

be trained and used in recognition in a more efficient manner. 

Through the use of a specialized technique, the authors are able to 

compress the set of detectors.  

The compression scheme used is simply using a single pattern to 

describe a set of several detectors. By using the patterns instead 

 

Figure 2. Pseudo Code for the Negative Selection Classification 

Algorithm 

detectors: set of detectors created by training algorithm 

sample: sample to be classified 

matches(): a function that returns true if an antibody 

recognizes a sample 

 

FOREACH { a | a ∈ detectors } 

       IF matches(a, sample} 

  return “non-self” 

 ENDIF 

ENFOREACH 

return “self” 

 

self: set of seen self samples 

detectors: the set of detectors 

matches(): a function that returns true if an antibody 

recognizes an element 

generate_random_antibody(): a function to generate a 

random antibody 

 

detectors = {} 

WHILE !stopping_criteria 

 new_antibody = generate_random_antibody() 

 match = FALSE 

 FOREACH { s | s ∈ self } 

  IF matches(s, new_antibody) 

   match = TRUE 

  ENDIF 

 END FOREACH 

 IF !match 

  detectors = detectors ∪ new_antibody 

 ENDIF 

ENDWHLE 

 



of the detectors themselves in the matching steps of the training 

and classification algorithms, the time complexity is lowered. The 

worst case time complexity of the original algorithm is 

exponential, but it becomes polynomial with the new technique. 

The results of this paper show that storing all of the detectors is 

unnecessary, and by compressing the set a substantial speedup is 

achieved.  

In a similar publication [11] Liśkiewicz and Textor, also deal with 

the optimization of the Negative Selection algorithm. However, 

the technique is very different and does not use compression of 

the detector set at all. The authors show that it is possible to 

implement the Negative Selection algorithm without creating a 

detector set at all, depending on the type of detectors used. The 

paper is very thorough and provides proofs for all claims, but does 

not implement and test the proposed technique. The results are 

similar to [10], with the time complexity of the Negative Selection 

algorithm being reduced from exponential to polynomial. This 

research is, like other research by the same authors, only 

applicable to detectors that work with strings, like r-chunk and r-

contiguous detectors. 

Following [10] and [11], the ideas in these papers were combined 

in [12] by Elberfeld and Textor which sought to settle the question 

of whether the Negative Selection algorithm could be used in real-

life problems. This paper presents two algorithms, both used for 

training an automaton, which is then used for classification. The 

training algorithms can be executed in polynomial time, and the 

automaton used for classification works in linear time. The 

algorithms work by simulating the Negative Selection algorithm, 

with the same behavior being exactly replicated by the more 

efficient algorithms. The algorithms use prefix trees to speed up 

the work, instead of the patterns used in [10]. 

The latest work by Textor on the subject of optimizing the 

execution of Negative Selection algorithms is [13]. One further 

variation from the previous approaches is explored in this 

publication, in which detectors are generated by sampling from 

the set of S-consistent detectors. S-consistent detectors are 

defined to be the set of detectors that do not match any element in 

the S set, which is the set of self samples. Whereas the Negative 

Selection Algorithm (NSA) algorithm normally samples the space 

of possible detectors uniformly, the author shows that by doing 

this differently, it is possible to speed up the execution of NSAs. 

This paper theoretically proves that it possible to speed up the 

execution of NSA by using probabilistic sampling techniques 

such as Markov Chain Monte Carlo methods. 

In [14] and [15], Wang, Yibo, and Dong propose a faster training 

and classification methods for Negative Selection algorithms. The 

technique they show uses “neighborhoods” in the feature space to 

represent both detectors and samples to be classified. They also 

introduce a method to improve the matching operation between 

detectors and samples that improves the performance, especially 

in high dimensions.  

In [16] Yang et al. the authors show a similar approach to the one 

used in [14] and [15]. The algorithm is called GF-RNSA, a 

Negative Selection algorithm which uses the concept of grid cells 

to speed up execution. The feature space is separated into grid 

cells, and detectors are generated separately for each cell, only 

comparing the candidate detectors with the self samples that are 

in the same grid cell, instead of the whole set. This approach also 

manages to eliminate the exponential time complexity of the 

NSA. This publication also showed experimental results. In [17] 

Wen et.al. apply a very similar technique as [16]. 

Lastly, a novel detector generation method is proposed in [18]. 

The method was developed by Ji and Dasgupta and is called V-

detector. The strategy involves the statistical analysis of the data 

in order to improve the amount of non-self space that is covered 

while also minimizing the number of detectors needed to do so. 

The detector generation process also takes into account the 

boundary of the classes in the data set to improve the quality of 

the set of detectors. The detectors are allowed to be of variable 

size, as well. These techniques allow the algorithm to be very 

efficient. The scheme is also applicable across many different 

detector types. 

III. OPTIMIZING THE NEGATIVE SELECTION 

ALGORITHM 

This section gives a general description of the optimization 

scheme along with implementation details. 

A. Optimizing the Training Algorithm 

In the pseudo code found in Figure 1, the function matches() is 

used to compare a new detector with every sample in the data set. 

This function is used heavily to find detectors that do not match 

any samples in the subset of samples in a data set not in the “self” 

class. This is because the detector is applied one-by-one to each 

sample in the training set. 

Instead of comparing a new detector with the set of self samples 

individually, in the optimized training algorithm the comparison 

proceeds feature-by-feature. This process is best explained as a 

“filtering” process that is applied on each feature in the data set 

individually. The filtering process discards the self samples that 

do not match the new detector in the current feature being 

processed. The set of self samples becomes smaller and smaller 

as the filtering proceeds, speeding up the comparison as the 

features are processed. If there are any self samples remaining in 

the set after all of the features are processed, we know that the 

proposed detector matches one or more self samples, and is 

therefore discarded (as with normal Negative Selection). If there 

are no self samples left in the set at any point in the processing, 

we know that the proposed detector does not match any self 

samples, and can therefore be added to the set of detectors.  

B. Optimizing the Classification Algorithm 

As in Figure 1, in the pseudo code found in Figure 2 the function 

matches() is used to compare the set of detectors with the sample 

to be classified. This function is used to find detectors that match 

the sample to be classified. It works by comparing each detector 

in the set of detectors to the sample to be classified individually. 

In the same way as the training algorithm, when classifying a 

sample into self or non-self, the comparison between the sample 

and the set of detectors proceeds feature-by-feature. The set of 

detectors that could match the self-sample becomes smaller and 

smaller as more and more detectors are “filtered” from the set. If 

the set of detectors is emptied during this filtering process, then 

the sample does not belong to the self class. If there are detectors 

remaining in the set after all of the features are processed, then we 

know that the sample belongs to the non-self class. 

Figure 3 shows primary filtering happening in two dimensions 

with two hyper-sphere detectors. It can be seen that the point to 

be classified falls within the radius of hyper-sphere B. Filtering 

based on the feature X, both hyper-spheres would be kept in the 

set, since the example falls within both in that dimension. 

Filtering based on the Y dimension would filter out the A detector, 

since the example does not fall within the radius of the A detector 

in that dimension. 

C. Implementing the Algorithm 

The Negative Selection algorithm implemented to test the 

optimization proposed in this research is implemented using 

hyper-sphere detectors. The detector radius is defined using 

Euclidian distance. Each detector contains a center point, defined 

as a set of coordinates in Euclidian space, as well as a radius. A 

detector matches a sample only if the sample falls within the  



Figure 3. Primary Filtering 

 

 

radius of the detector. Each detector has a fixed radius, given to 

the training algorithm as a parameter. The only other parameter 

needed by the training algorithm is the size of the detector set to 

be generated. The range of the values in each feature of the data 

set was normalized to the range [0,1]. This is done to simplify the 

code, but is not necessary and the optimization can be 

implemented without this step. 

The training algorithm uses a two-stage filtering process to speed 

up the comparison between the new detector and the set of 

samples containing the self class. The first stage compares each 

feature of the sample to the allowed range of the detector in that 

feature. The allowed range is calculated by adding and subtracting 

the radius from the coordinate of the center point in that 

dimension. If the sample does not fall within the range calculated, 

it is removed from the set. In this manner, the set of samples that 

could be contained by a detector is iteratively reduced in size.  

The secondary filtering step is necessary in this case because of 

the “roundness” of the hyper-sphere detectors. The primary 

filtering process could leave some samples in the set if they fall 

within the hyper-cube that contains the hyper-sphere that is the 

detector. Secondary filtering then proceeds as normally done by 

the Negative Selection algorithm, by iteratively comparing the 

remaining sample set with the detector. After primary and 

secondary filtering are completed, the samples remaining in the  

set are the ones that fall within the detector radius. If the set is 

empty, then the detector can be added to the set of detectors, since 

it does not match any samples in the self set. If at any point in the 

primary filtering process the set of samples becomes empty, then 

the algorithm is able to add the detector immediately, since it is 

known that the detector does not match any sample in the self set 

without having to perform secondary filtering. The pseudo code 

for the optimized Negative Selection training algorithm can be 

found in Figure 4. In this pseudo code listing the primary filter 

section contains while loop that is filtering out all detectors that 

do not meet the criteria. This filter applies the logic described in 

the previous sections. 

In the pseudo code, p[“center”] defines the center point, 

p[“radius”] defines the radius, and p[“class”] defines the class that 

the hypersphere belongs to, all attributes of hypersphere p. In the 

same way, i[“data”] defines the center point, and i[“class”] 

defines the class that the point belongs to, all attributes of point i. 

 

 

Figure 4. Pseudo Code for the Optimized Negative Selection Training 

Algorithm 

When using a detector in the pseudo code, d[“center”] references 

the vector that contains the center point of the detector d, and 

d[“center”][0] references the first dimension of that vector. 

Similarly, d[“radius”] references the scalar value that defines the 

radius of the detector. When using a data point in the training set 

in the pseudo code, s[“class”] references the category that the 

sample s belongs to. Also, the vector that defines the sample s is 

stored in s[“data”], with s[“data”][0] referencing the first 

dimension of the data vector of s. 

The filtering process is very similar in the classification algorithm 

as it is in the training algorithm, only it is done in reverse. Instead 

of comparing the set of self samples with one detector, the 

filtering process compares a set of detectors with one sample. The 

set of detectors is iteratively reduced, and the remaining detectors 

are subjected to secondary filtering. If a detector remains in the 

set after both primary and secondary filtering are complete, then 

the sample is classified as non-self, since it is “matched” by one 

or more detectors, otherwise it is classified as self. The pseudo 

code for the optimized Negative Selection classification 

algorithm can be found in Figure 5. In this pseudo code listing the 

primary filter section contains while loop that is filtering out all 

Definitions: 

training_set: a list of the training data points, each with an attached 
class label 

detectors: the set of detectors to be created 

population_size: the size of the desired population of detectors 
self_class_label: the label of the class designated as “self” 

normalize(): a function to normalize the data set 

generate_random_antibody(): a function to generate a random 
antibody 

distance(): a function for calculating the Euclidian distance 

between points 
nd: total number of dimensions in the data set 

 

Initialization: 

training set = normalize(training_set) 

detectors = {} 

Training Algorithm: 

WHILE | detectors | < population_size: 

self_class = { s | s ∈ training_set AND s[“class”] = 
self_class_label } 

 na = generate_random_antibody() 
  

 #primary filtering 

 d = 0 
 WHILE d < nd 

  self_class = { s | s ∈ self_class  
  AND na[“center”][d] > (s[“data”][d] - na[“radius”] )  

  AND s[“data”][d] < (na[“center”][d] + na[“radius”] )} 
      d = d + 1 

 ENDWHILE 

 
 #early decision 

        IF | self_class | = 0 

  detectors = detectors ∪ na 
 #secondary filtering 

 ELSE 
  flagged = FALSE 

  FOREACH { s | s ∈ self_class } 
  IF distance(na[“center”], s[“data”]) < na[“radius”] 

    flagged = TRUE 

   ENDIF 

  ENDFOREACH 

             IF flagged = FALSE:     

   detectors = detectors ∪ na 
  ENDIF 

 ENDIF 

ENDWHILE 

 

 

 

 



detectors that do not meet the criteria. This filter applies the logic 

described in the previous sections.  

In both of the optimized training and classification algorithms an 

“early decision” can be made. This happens when the set of self 

samples is emptied, in the training algorithm, or when the set of 

detectors is emptied, in the classification algorithm. 

IV. TESTING THE OPTIMIZED ALGORITHM 

This section contains details about the way in which the 

optimization was implemented, along with the data set used and 

the claims being tested. 

To test the optimization, the Breast Cancer Wisconsin 

(Diagnostic) Dataset was chosen from the UCI repository [19]. 

This data set was chosen because it is limited to two classes, 

which fits with the AIS paradigm. To test the algorithm, some 

preprocessing was done to the data set. The class label of each 

sample was placed in the first column of the data set. All samples 

with missing values were removed from the data set, making the 

data set smaller but simplifying the algorithm. All duplicate rows 

were removed from the data set as well. After this was done, the 

data set contained 683 labeled samples, each with 9 real-valued 

features. The class labels found in this data set are “malignant” 

with 239 samples found in the data set, and “benign” with 444 

samples found in the data set. 

The model was validated using 10-fold cross validation. To do 

this, the dataset used was split evenly into 10 subsets. From these 

10 subsets, training, validation, and testing sets are created. The 

training set created used 80% of the samples, the validation 10%, 

and the testing set 10% of the data. Stratification was also used, 

which is a technique used to make sure that each of the 10 subsets 

is created so that it contains the same proportion of each class in 

the data set. Through this process, we are able to create 10 unique 

testing sets, 10 unique validation sets, and 10 unique training sets. 

By cycling through these, the experiments are performed 10 times 

and the results are averaged.  

 

Figure 5. Pseudo Code for the Optimized Negative Selection 
Classification Algorithm 

Since the algorithm requires one parameter, we set aside one 

subset in every test run to determine the best values for these 

parameters. To accomplish this, a grid search is performed on the 

validation set, with the objective of finding the value for the 

parameter which maximizes the accuracy of the algorithm. The 

parameter is the radius of the hyper-spheres. The radius is varied 

from 0.01 to 0.99 in 0.01 increments  

The tests were performed on an Intel i5 processor running at 1.80 

GHz, with 4 GB of memory. The operating system used was 64-

bit Windows 8.1. 

Four experiments were performed with the original Negative 

Selection algorithm and the optimized version of the Negative 

Selection algorithm. The results of the experiments are detailed in 

the next section. The experiments are designed to demonstrate 

three claims that are made about the optimized Negative Selection 

algorithm. The claims deal with the execution time, classification 

time, and classification performance of the algorithm. Our claims 

about the algorithm are these: 

1. The optimized training algorithm is faster than the 

unoptimized training algorithm. 

2. The optimized classification algorithm is faster than the 

unoptimized classification algorithm. 

3. The optimization does not affect the accuracy of the 

algorithm, being functionally the same. 

To make the comparisons between the optimized and unoptimized 

algorithms as unbiased as possible, two methods were used: when 

testing the training algorithm, both versions of the algorithm were 

given the same parameters and the exact same data set, with the 

same set of sub data sets (due to the 10-fold cross validation). 

When testing the classification algorithm, the exact same set of 

detectors is provided to both versions of the algorithm. This was 

done so that we could compare both versions of the algorithm 

without worrying about randomness affecting the results.  

When comparing the accuracy of the optimized and unoptimized 

algorithms, the accuracy is calculated as follows: 

          Accuracy = ( TP + TN ) / ( TP + TN + FP + FN ) ) (1) 

were TP is the number of true positive predictions, TN is the 

number of true negative predictions, FP is the number of false 

positive predictions, and FN is the number of false negative 

predictions. 

All experiments were performed on an Intel i5-based computer 

running at 1.80 GHz. The computer has 4 GB of memory, and the 

operating system used is 64-bit Windows 8.1. Both the optimized 

and unoptimized algorithms were coded in Python 3.4.  

V. EXPERIMENTAL RESULTS 

This section shows the results of the experiments and 

demonstrates the validity of the claims made in the previous 

section. To simplify the tests, the detector radius was set to 0.5 for 

the experiments graphed in Figures 6, 7, and 8. This radius was 

found using a grid search, which was used to find the detector 

radius that maximized the accuracy of the algorithm. The grid 

search was performed using the validation set.  

The relationship between the training time and the data set size is 

shown in Figure 6. The detector set size is held constant at 1000, 

and the data set size was increased from 100 to 500. It can be seen 

that the optimized training algorithm remains linear on the 

number of samples in the data set. The time is measured in 

seconds.  

A confidence interval was calculated using data from Figure 6 for 

the difference in the average time taken to finish by both 

detectors: set of the detectors generated by the training algorithm 
x: the sample to be classified 

self_class_label: label of the class designated as “self” 

non_self_class_label: label of the class designated as “non-self” 
distance(): a function for calculating the Euclidian distance 

between points 

nd: total number of dimensions in the data set 
 

Classification Algorithm: 

#primary filtering 
d = 0 

WHILE d < nd 

detectors = { a | a ∈ detectors  
AND x[“data”] [d] > (a[“point”][d] - a[“radius”])  
AND x[“data”] [d] < (a[“point”][d] + a[“radius”]) } 

     d = d + 1 

ENDWHILE 
 

#secondary filtering 

FOREACH {a | a ∈ detectors} 
 d = distance(x[“center”], a[“center”]) 

     IF d <= a[“radius”] 
  return non_self_class_label 

 ENDIF 

ENDFOREACH 
return self_class_label 

 

 



algorithms. To do this, 10 data points were taken from the last test 

graphed in the figure. For this test, the detector set size was 1000, 

and the data set size was 500. With these values a confidence 

interval was calculated at the 95% confidence level. The 

difference in the average time taken to complete training was 

calculated to be between 1.3 and 1.01 seconds, with the optimized 

algorithm being faster. This helps to show that claim 1 is true. 

The relationship between the training time and the detector set 

size is shown in Figure 7. The data set size is held constant at 500, 

and the detector set size was increased from 100 to 1000. The 

optimized training algorithm is also linear with the number of 

detectors in the set. It is faster than the unoptimized training 

algorithm.  

A confidence interval was calculated using data from Figure 7 for 

the difference in the average time taken to finish by both 

algorithms. To do this, 10 data points were taken from the last test 

graphed in the figure. For this test, the detector set size was 1000, 

and the data set size was 500. With these values a confidence 

interval was calculated at the 95% confidence level. The 

difference in the average time taken to complete was calculated to 

be between 1.07 and 1.04 seconds, with the optimized algorithm 

being faster. This also helps to demonstrate the validity of claim 

1. 

The relationship between the size of the set of detectors and the 

classification time is shown in Figure 8. The classification time is 

the time taken to classify one sample. The size of the detector set 

was increased from 100 to 1000. 

The confidence interval was calculated using data from Figure 8 

for the difference in the average time taken to finish by both 

algorithms. To do this, 10 data points were taken from the last test 

graphed in the figure. For this test, the detector set size was 1000. 

  

Figure 6. Data Set Size and Training Time  
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With these values a confidence interval was calculated at the 95% 

confidence level. The difference in the average time taken to complete 
was calculated to be between 0.0033 and 0.00033, with the optimized 

algorithm being faster. The results of this experiment demonstrate that 

claim 2 is valid. 

The fourth experiment is done on the training and classification 

algorithms in tandem, proving that the combination of the 

optimized training and classification algorithms does not 

negatively affect the accuracy of the algorithm. Figure 9 shows 

the relationship between the data set size and the accuracy 

achieved by the algorithm. As mentioned, the optimized and 

unoptimized versions of the algorithm use the exact same data set 

to create the set of detectors. The size of the set of detectors 

generated is held constant at 1000. Although it is not easily seen, 

the accuracy achieved by the optimized algorithm does not match 

the accuracy of the unoptimized algorithm exactly. This is due to 

the fact that the Negative Selection algorithm uses randomness in 

the training process. 

A t-test was performed to compare average accuracy achieved by 

both the optimized and unoptimized algorithms. The samples 

were paired according to the data set size used, using the same 

data that is graphed in Figure 9. The confidence level used was 

95%. The null hypothesis could not be rejected, meaning that the 

analysis did not provide evidence against claim 3. Additionally, 

the Pearson correlation between the paired accuracies was 

calculated to be 0.996, a value that shows that the accuracies of 

the unoptimized and optimized versions of the algorithm are very 

closely related. 

VI. CONCLUSIONS AND FUTURE WORK 

The optimized training algorithm is, on average, 6.6 times faster 

than the unoptimized training algorithm, when averaging the 

results from Figures 7, and 8. The optimized classification  
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algorithm is, on average, 11.3 times faster than the unoptimized 

classification algorithm, when averaging the results from Figure 

9. Furthermore, the experiments performed have shown that the 

accuracy of the algorithm does not diminish when the 

optimization is applied. 

The optimized algorithm, however, has several weaknesses. First, 

the complexity of the algorithm remains in the same class, 

although the constants are decreased significantly. Second, the 

optimization is only applicable to detectors in which each 

dimension can be evaluated individually, and which allow the set 

of data points or detectors to be filtered. That is, the optimization 

works on detectors types that allow a data point or detector to be 

taken out of the set if it does not match in one individual 

dimension, this is not always possible. Third, the density of the 

points in the data set can have a significant effect on the 

performance of the optimized training algorithm. If the points are 

densely packed, then none of them will be filtered out by the 

primary filtering process and the secondary filtering will then 

have to perform all of the work. In future research, this 

optimization scheme could be applied to other data sets to 

highlight the effect that the density of the data set has on the 

performance of the optimized algorithm. 

All previous research we have found on the optimization of the 

Negative Selection algorithm has applied to detectors other than 

hyper-spheres. This research has demonstrated a simple way to 

optimize the performance of the Negative Selection algorithm 

when hyper-spheres are used.  A direct comparison between this 

optimization scheme and others found in the literature is not 

possible.  

Although the optimization has been demonstrated experimentally 

to not affect the accuracy of the algorithm, this has not been 

proven formally. Future research could be completed to provide a 

formal proof of the optimized Negative Selection algorithm’s 

equivalency with the unoptimized Negative Selection algorithm. 

Future work can also be done in the application of the 

optimization to more complex data sets and exploring the 

performance of the optimized algorithm. Lastly, the optimization 

proposed in this publication could be very useful when combined 

with negative databases, described in [20] by Esponda et al. 
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